Home > Algebra, Mathematics, Miscellaneous > Largest Triangle inside a Curvilinear Triangle

Largest Triangle inside a Curvilinear Triangle

RegionUnderCircleIn the diagram shown we have part of a circle of radius R whose center is at the point (R,R) and which is tangent to the x and y axes — though the graph is drawn for R = 2, we want to work with general R.

Our focus is on the region under the circle above the x-axis. The question is: what is the maximum area that a triangle inside this region can have?

It may occur to you that there is a reasonable `quick’ answer, but the point of the problem is to reason it out carefully so you more or less have a proof that you do indeed get a maximum area. Since the region is concave, the vertices of a triangle cannot be so that one is too close to the far right while another vertex close to the far top left (or else the triangle would not be fully inside the region).

Have fun!

  1. June 20, 2015 at 11:32 am

    Reblogged this on rennydiokno.com.

  1. No trackbacks yet.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: